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Abstract

Aging is a complex process associated with physiological changes in numerous organ systems. In particular, aging of the immune system is characterized by
progressive dysregulation of immune responses, resulting in increased susceptibility to infectious diseases, impaired vaccination efficacy and systemic low-grade
chronic inflammation. Increasing evidence suggest that intracellular zinc homeostasis, regulated by zinc transporter expression, is critically involved in the
signaling and activation of immune cells. We hypothesize that epigenetic alterations and nutritional deficits associated with aging may lead to zinc transporter
dysregulation, resulting in decreases in cellular zinc levels and enhanced inflammation with age. The goal of this study was to examine the contribution of age-
related zinc deficiency and zinc transporter dysregulation on the inflammatory response in immune cells. The effects of zinc deficiency and age on the induction
of inflammatory responses were determined using an in vitro cell culture system and an aged mouse model. We showed that zinc deficiency, particularly the
reduction in intracellular zinc in immune cells, was associated with increased inflammation with age. Furthermore, reduced Zip 6 expression enhanced
proinflammatory response, and age-specific Zip 6 dysregulation correlated with an increase in Zip 6 promoter methylation. Furthermore, restoring zinc status via
dietary supplementation reduced aged-associated inflammation. Our data suggested that age-related epigenetic dysregulation in zinc transporter expression
may influence cellular zinc levels and contribute to increased susceptibility to inflammation with age.
Published by Elsevier Inc.
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1. Introduction

Aging of the immune system results in a progressive dysregulation
of immune responses including immunosenescence, where there is a
gradual decline in both cellular and humoral immune responses, and
increased susceptibility to infectious diseases and compromised
vaccination efficacy in the elderly [1]. At the same time, “inflamm-
aging,” a low-grade systemic chronic inflammation characterized by
constitutively elevated levels of proinflammatory cytokines in blood,
is commonly observed in the elderly population [2,3]. Chronic
inflammation has been implicated in the promotion of many age-
related diseases including cancer, cardiovascular disease and auto-
immune diseases. In addition, increases in inflammatory mediators in
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the blood are significant predictors of morbidity andmortality in aged
individuals [4–6].

Zinc is an essential micronutrient required for many cellular
processes, especially for the normal development and function of the
immune system [7–9]. National surveys indicate that a significant
portion of the aged population has inadequate zinc intake [10–13],
and a decline in zinc status, as shown by plasma zinc concentrations,
is observed with increasing age [14–17]. There are remarkable
similarities between the hallmarks of zinc deficiency and age-related
immunological dysfunction, both characterized by impaired immune
responses and systemic chronic inflammation. Thus age-related zinc
deficiency may play a significant role in age-associated dysregulation
of immune function and may be a contributing factor in age-related
inflammation and associated morbidities [18,19]. Importantly, zinc
has anti-inflammatory properties and low zinc status is associated
with increased susceptibility to infections and exaggerated inflam-
matory responses [20–23]. Recent studies indicate that intracellular
zinc homeostasis is critically involved in the signaling events in
immune cells, and the regulation of cellular zinc in these immune cells
is mediated by changes in the expression of specific zinc transporters
[24–26]. Zinc transporters comprises a family of multiple transmem-
brane spanning domain proteins that are encoded by two solute-
linked carrier (SLC) gene families: SLC30 (ZnT) and SLC39 (Zip)

http://www.sciencedirect.com/science/journal/09552863
http://dx.doi.org/10.1016/j.jnutbio.2012.07.005
http://dx.doi.org/10.1016/j.jnutbio.2012.07.005
http://dx.doi.org/10.1016/j.jnutbio.2012.07.005
mailto:Emily.Ho@oregonstate.edu
http://dx.doi.org/10.1016/j.jnutbio.2012.07.005


354 C.P. Wong et al. / Journal of Nutritional Biochemistry 24 (2013) 353–359
[27,28]. ZnT and Zip family zinc transporters have opposing roles in
regulating cellular zinc homeostasis; ZnT transporters reduce cyto-
solic zinc bioavailability by promoting zinc efflux and Zip transporters
function by increasing cytosolic zinc. In the context of inflammation,
stimulation of immune cells with inflammatory stimuli such as
lipopolysaccharide (LPS) results in changes in cellular zinc that is
mediated by alterations in zinc transporter expression [29]. Thus
alterations and/or dysregulation of zinc transporter expression with
age could potentially affect zinc homeostasis in immune cells and
contribute to immune dysfunction and chronic inflammation [18,30].

The mechanisms contributing to age-related zinc loss and age-
related inflammation are unclear. Accumulating evidence indicates
that epigenetic dysregulation is a common feature of aging,
characterized by global DNA hypomethylation and gene-specific
promoter hypermethylation or hypomethylation, as well as alteration
in histone modifications [31–34]. In the immune system, age-
associated epigenetic modifications such as DNA methylation have
been shown to affect immune cell activation and may also contribute
to the decline of cellular zinc with age, as several zinc transporters
have been shown to be susceptible to epigenetic regulation [35–38].
At the same time, nutrient deficits such as zinc deficiency may further
modulate epigenetic regulation [39–41]. The goal of the current study
was to examine the contribution of age-related zinc deficiency and
zinc transporter dysregulation on the inflammatory response in
immune cells using an in vitro cell culture system and an aged mouse
model. We hypothesized that age-related decreases in cellular zinc
levels, in part, are mediated by epigenetic alterations that result in
zinc transporter dysregulation and contribute to enhanced inflam-
mation with age. Moreover, enhancing zinc status in aged mice
should mitigate age-related inflammation.
2. Materials and methods

2.1. Cell culture, in vitro zinc depletion and LPS treatments

Human monocytic cell line THP-1 was obtained from American Type Tissue
Collection (Manassas, VA, USA). Cells were grown in RPMI 1640 culture medium with
10% fetal bovine serum (FBS) and maintained in humidified incubators with 5% CO2 at
37°C. Zinc-deficient (ZD) media were prepared, as previous published, using a
chelation strategy in which zinc was removed from FBS by incubating with 10% Chelex
100 (wt/vol) (Sigma, St. Louis, MO, USA) overnight at 4°C with constant stirring [42].
THP-1 cells were cultured in zinc-adequate (ZA) medium (RPMI with 10% Chelex-
treated FBS and 4 μM ZnCl2) or ZD medium (RPMI with 10% Chelex-treated FBS) for up
to 14 days, and media were changed every 3 to 4 days. Mineral levels in tissue culture
media and THP-1 cells were determined by inductively coupled plasma-optical
emission spectroscopy (ICP-OES) and/or FluoZin-3 flow cytometry where appropriate.
ZA or ZD THP-1 cells were treated with phorbol 12-myristate 13-acetate at 5 ng/ml for
48 h to induce the cells to differentiate into macrophages. Differentiated THP-1
macrophages were treated with 0, 10 or 100 ng/ml LPS (Sigma) for 6 h and harvested
for zinc and gene expression analyses. Previous time-course studies indicated that LPS
induced a rapid proinflammatory response (data not shown), and the 6-h time point
was chosen to reflect optimal induction time for various genes of interest.
2.2. Animals, diets and study design

Female C57Bl/6 mice at various ages (2–26months) were purchased from the aged
rodent colonies at the National Institute on Aging (Bethesda, MD, USA). Mice were
housed in a temperature- and humidity-controlled environment and were fed
standard rodent diet where appropriate, or randomly assigned to a purified ZA diet
containing 30 mg/kg zinc, or a zinc-supplemented (ZS) diet containing 300 mg/kg zinc
that was previously shown to be well tolerated and were able to normalize plasma zinc
levels in oldmice to levels similar to that of youngmice [43,44]. Purified ZA and ZS diets
were purchased from Research Diets (New Brunswick, NJ, USA). Mice were fed ZA or ZS
diets for 3 weeks. Food and water were provided ad libitum. Dietary intakes and body
weights of all mice were monitored throughout the entire study. Mice were euthanized
by CO2 asphyxiation at the termination of the experiments, and sera and tissues were
collected. The animal protocol was approved by the Oregon State University
Institutional Laboratory Animal Care and Use Committee. Tissues were processed
immediately for ex vivo stimulation and/or differentiation or were preserved in
RNALater (Life Technologies, Grand Island, NY, USA) for DNA and RNA isolation.
2.3. Ex vivo differentiation of bone marrow-derived dendritic cells and macrophages

Bone marrow (BM)-derived dendritic cells (BMDCs) and macrophages (BMM)
were differentiated ex vivo according to published protocols [45,46]. BM cells were
flushed and collected from the femurs and tibias of young and old mice. Red blood cells
(RBCs) were removed using RBC lysis buffer (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM
EDTA). BMs were adjusted to 1.5×106 cells/ml in RPMI media containing 10% FBS.
BMDC and BMM were differentiated in media containing 20 ng/ml granulocyte/
macrophage colony stimulating factor (GM-CSF) and 20 ng/ml macrophage colony
stimulating factor (M-CSF), respectively (Peprotech, Rocky Hill, NJ, USA). Nonadherent
cellswere removed ondays 2 and4, andBMDCandBMMcellswereharvestedonday 7 for
intracellular zinc analysis and siRNA transfections, respectively.

2.4. Inflammatory response assays

For ex vivo splenocyte stimulation, spleens collected from young and oldmice were
made into single-cell suspension, and RBCs were removed using RBC lysis buffer. To
determine how age and zinc status affect inflammatory response on a per cell basis, an
equal number of splenocytes fromyoung or oldmicewere seeded at 5×106 cells perwell
in 24-well culture plates and treatedwith 0, 0.1 and 1 μg/ml LPS for 6 h and harvested for
zinc and gene expression analyses. Serum interleukin (IL)-6 levels were detected using
mouse IL6 Ready-SET-Go ELISA kit from eBioscience (San Diego, CA, USA).

2.5. Total and intracellular zinc measurements

Total zinc concentrations were determined using ICP-OES, as previously described,
with minor modification [47]. Briefly, samples (plasma or cell pellets) were digested in
1ml 70% ultrapure nitric acid and incubated overnight. Incubated samples were diluted
with chelex-treated nanopure water to a final concentration of 7% nitric acid,
centrifuged and analyzed using the Prodigy High Dispersion ICP-OES instrument
(Teledyne Leeman Labs, Hudson, NH, USA) against known standards. Intracellular zinc
levels were determined using FluoZin-3 acetoxymethyl ester (FluoZin-3), a cell
permeable, zinc-specific fluorescent indicator that measures intracellular free zinc
(Molecular Probes, Eugene, OR, USA), according to published methods [48]. Cells were
labeled with 1 μM FluoZin-3 for 30 minutes at 37°C and washed once in phosphate-
buffered saline. Intracellular zinc levels, as determined by FluoZin-3 mean fluorescence
intensity, were analyzed by flow cytometry. Data were acquired using FACSCalibur (BD
Biosciences, San Jose, CA, USA). Data analyses were performed using Summit software
(DakoCytomation, Fort Collins, CO, USA).

2.6. Proinflammatory and zinc transporter gene expression

Total RNA from tissues and treated cells were isolated using TRIzol (Invitrogen). Total
RNA was reverse transcribed into cDNA using SuperScript III First-Strand Synthesis
SuperMix for quantitative real-time polymerase chain reaction (qRT-PCR) (Invitrogen).
Real-time PCR was performed using the following PCR primers: human tumor necrosis
factor α (TNF) (forward: 5′-CCCCAGGGACCTCTCTCTAATC-3′, reverse: 5′-GGTTTGCTACAA-
CATGGGCTACA-3′), human IL1β (forward: 5′-CCTGTCCTGCGTGTTGAAAGA-3′,
reverse: 5′-GGGAACTGGGCAGACTCAAA-3′), human GAPDH (forward: 5′-CGAGATCCCTC-
CAAAATCAA-3′, reverse: 5′-TTCACACCCATGACGAACAT-3′), mouse TNFα (forward: 5′-
CTGTAGCCCACGTCGTAGCA-3′, reverse: 5′-GTGTGGGTGAGGAGCACGTA-3′), mouse IL1β
(forward: 5′-AAGATGAAGGGCTGCTTCCAA-3′, reverse: 5′-TGAAGGAAAAGAAGGTGCT-
CATG-3′), mouse Zip 6 (forward: 5′-AAGTGAGAAGAAGGCAGAAATCC-3′, reverse: 5′-
GGAGAAGATGTAACAGAGCATCG-3′), mouse ZnT 1 (forward: 5′-TGGATGTACAAG-
TAAATGGGAATCT-3′, reverse: 5′-GTCTTCAGTACAACCCTTCCAGTTA-3′), or mouse 18S
ribosomal RNA (18S) (forward: 5′-CCGCAGCTAGGAATAATGGAAT-3′, reverse: 5′-
CGAACCTCCGACTTTCGTTCT-3′). Real-time PCR reactions were performed using Fast SYBR
GreenMastermix (Invitrogen) on 7900HT Fast Real-Time PCR System (Applied Biosystems,
Foster City, CA, USA). Gene copies were determined using the standard curve method. A
standard curvewasgenerated fromserial dilutionsofpurifiedplasmidDNAthat encoded for
each gene of interest. Data represent the copy number of the gene of interest normalized to
the copy number of GAPDH (for human) or 18S (for mouse) housekeeping genes.

2.7. Zip 6 gene silencing

BM macrophages were harvested and transfected with Zip 6-specific siRNA
(Ambion Silencer siRNA S98750) using siPORT Amine and Ambion Silencer siRNA
Transfection kit (Applied Biosystems). Control cells were transfected with scrambled
siRNA (Ambion Silencer Select Negative Control No. 1). Transfected cells were seeded
in 24-well tissue culture plates at 3×105 cells per well for 24 h and treated with 0, 10
and 100 ng/ml LPS for 6 h and harvested for gene expression analyses.

2.8. Genomic DNA isolation and DNA methylation analyses

Genomic DNA was isolated using DNeasy Blood and Tissue kit (Qiagen, Valencia, CA,
USA). Global DNA methylation was measured using SuperSense Methylated DNA
Quantification Kit (Epigentek, Brooklyn, NY, USA) and was reported as relative
fluorescence units (RFUs) per 100 ng genomic DNA. Zip 6 promoter methylation was
determined using Zip 6-specific EpiTect Methyl Profiler qPCR assay (Qiagen), which
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analyzed DNA methylation status of the CpG island within the Zip 6 promoter (Chr18
24761649–24762812).

2.9. Statistical analyses

Statistical analyses were performed using GraphPad Prism Version 5.02 (Graph-
Pad, La Jolla, CA, USA). All data were reported as mean±S.E.M. P values were
determined using unpaired t test, one-way analysis of variance (ANOVA) or two-way
ANOVA, where appropriate. Bonferroni post hoc tests were performed to determine
differences among the means when there was a significant main effect in one-way or
two-way ANOVA. Statistical significance was defined as P≤.05.

3. Results

3.1. Proinflammatory response is associated with reduced intracellular
zinc and is enhanced by zinc deficiency

The effects of zinc deficiency on inflammation were determined in
THP-1 cells in vitro. After 10 days of culture in ZDmedia, THP-1 cells had
significantly lower total zinc compared to cells cultured in ZA media
(Fig. 1A). In addition, stimulation of THP-1 cells with LPS (Toll-like
receptor 4 agonist) significantly reduced intracellular zinc levels in ZA
THP1 cells (Fig 1B). The intracellular zinc levels in ZD THP-1 cells
remained significantly lower compared to ZA cells, both pre- and post-
LPS stimulation (Fig. 1B). Zinc deficiency also enhanced the LPS-induced
proinflammatory response. Stimulation of THP-1 cells with LPS elicited a
well-characterized and dose-dependent proinflammatory response, as
determined by the induction of two prototypical proinflammatory
cytokines, TNFα and IL1β. Our data indicated that zinc deficiency
significantly increased the expression of both TNFα (Fig. 1C) and IL1β
(Fig. 1D)mRNAexpression in ZDTHP-1 cells compared to ZATHP-1 cells.
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3.2. Age-related reduction in intracellular zinc in immune cells is
associated with enhanced proinflammatory response

Aging was associated with a decline in plasma zinc concentrations
(Fig. 2A). Despite a reduction in plasma zinc, total tissue zinc levels
(including brain, liver, pancreas and spleen) measured by ICP-OES
were not significantly different between young and oldmice (data not
shown). However, although total zinc levels did not differ in several
tissues, FluoZin-3 analysis revealed that intracellular zinc levels were
significantly lower in immune organs including thymocytes, spleno-
cytes and BM cells of aged mice (Fig. 2B). Notably, BMDCs of aged
mice had lower intracellular zinc compared to BMDC from young
mice, despite ex vivo differentiation and culture in ZA media.
Importantly, our data suggested that age-related decreases in
intracellular zinc in immune cells were associated with increasing
inflammation, as was demonstrated by a significant increase in
baseline IL1β mRNA expression in the spleens in aged mice (24
months) compared to young mice (3 months) (Fig. 2C). There was
also a significant age effect where aged splenocytes exhibited an
increase in induced IL1β mRNA expression compared to young
splenocytes, when stimulated with LPS ex vivo (Fig 2D).
3.3. Age-related increase in proinflammatory response is associated with
dysregulation of Zip 6 zinc transporter expression

The regulation of cellular zinc homeostasis and immune activation
is, in part, controlled by differential zinc transporter expres-
sion [25,29]. There were no significant age-related changes in the
baseline expression of zinc transporters (Zip 1–6, ZnT 1–7) in the
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spleens between young and aged mice (data not shown). In contrast,
ex vivo LPS stimulation induced a significant up-regulation of Zip 6
expression in the splenocytes of the younger mice (3 and 12months).
This induction was blunted in the splenocytes of older mice (18 and
24 months; Fig. 3A). While the gene expression of other zinc
transporters has also been reported to alter during LPS treatment
[29], only Zip 6 had age-associated alteration in gene expression in
response to LPS treatment. We next examined whether Zip 6
dysregulation in aged mice was associated with age-related epige-
netic alterations, particularly with respect to changes in DNA
methylation. Global DNA methylation was significantly decreased
with age (Fig. 3B). However, a significant age-specific increase in DNA
methylation within the CpG island in the Zip6 promoter region was
observed (Fig. 3C). To demonstrate that Zip 6 was involved in the
induction of a proinflammatory response, Zip 6 expression was
silenced in BMMs prior to the induction of a LPS-mediated
proinflammatory response. Zip 6 expression in BMM transfected
with Zip 6 siRNA was significantly reduced compared to control.
Further, gene silencing was specific to Zip 6, as ZnT 1 expression was
unaffected (Fig. 3D). Upon LPS stimulation, Zip 6-silenced BMM had
significantly increased TNFα expression compared to control
(Fig. 3E). Taken together, our data suggested that Zip 6 dysregulation
was involved in enhanced inflammation during aging.
3.4. Dietary zinc supplementation decreases age-associated
inflammation

We had previously shown that dietary zinc supplementation can
improve the zinc status in aged mice [44]. In this study, we found that
dietary zinc supplementation for 3 weeks also mitigated aged-related
increases in proinflammatory cytokine levels. Age-related increases in
serum IL6 were significantly reduced in aged mice fed a ZS diet
compared to aged mice fed a ZA diet (Fig. 4A). Similarly, age-related
increases in TNFα expression were significantly reduced in the
splenocytes of aged mice fed a ZS diet (Fig. 4B). Our data indicated
that restoring zinc status in aged mice could overcome and decrease
chronic inflammation in old age.
4. Discussion

Declining zinc status during aging may contribute to immune
dysfunction and chronic inflammation, and many age-related health
problems are conditions that are also associated with poor zinc status
[30,49]. While zinc is known to act as an anti-inflammatory agent,
however to date, the precise mechanisms linking zinc, age and
inflammation are unclear. Our study is the first to report the potential
role of age-related epigenetic control on zinc homeostasis. Specifi-
cally, these studies provide new evidence that suggests that
methylation of specific zinc transporters with age may be one of the
contributing factors resulting in zinc transporter dysregulation, and
age-related zinc deficiency and inflammation. In this study, we
demonstrated that zinc deficiency, particularly the reduction in
intracellular zinc within immune cells, was associated with increased
inflammation with increased age of the animal. We further showed
that reduced Zip 6 mRNA expression enhanced proinflammatory
responses, and age-specific Zip 6 dysregulation correlated with an
increase in Zip 6 promoter methylation. Moreover, restoring zinc
status via dietary supplementation reduced aged-associated inflam-
mation. Our animal data suggested that age-related epigenetic
dysregulation in zinc transporter expression may influence cellular
zinc levels and contribute to increased susceptibility to inflammation
with age.
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Recent studies indicate that intracellular zinc homeostasis is
critically involved in the signaling events in immune cells [24]. For
example, T-cell receptor signaling and Th1 cell differentiation are
controlled by activation-induced zinc influx during T-cell activation,
and in DC, a reduction in intracellular zinc is required for DC
maturation and antigen presentation [25,29,50]. In our in vitro study,
LPS-stimulated proinflammatory response was accompanied by a
significant reduction in intracellular zinc in THP-1 macrophages
(Fig. 1). We further showed that reduced intracellular zinc in immune
cells of aged mice was associated with increased inflammatory
response (Fig. 2). Our data suggested that a decrease in cellular zinc
was required for the induction of a proinflammatory response that
was dysregulated with age and reaffirmed the importance of zinc
homeostasis in controlling immune cell activation.

Zinc transporters play an important role in regulating cellular zinc
homeostasis. Members of Zip and ZnT zinc transporter families
exhibit tissue and cell-specific expression and possess differential
responsiveness to dietary zinc, as well as to physiologic stimuli,
including cytokines [27,51]. The expression of zinc transporters has
been profiled in immune cell types, and their regulation plays an
important role in specific immune cell activation. Intracellular zinc
homeostasis in different leukocyte subsets is regulated by distinct
patterns of zinc exporter expression [52,53]. Zinc transporter
expression is important in controlling the activation and maturation
of various immune cells [25,29]. In particular, Zip 6 and ZnT 1 have
been shown to be key transporters that control free zinc levels in
immune cells. Intracellular zinc levels and Zip 6 are involved in the
maturation of DC, and a reduction in cellular zinc or Zip 6 expression
leads to enhanced antigen presentation and DC-mediated immune
responses [29]. We hypothesized that alteration and/or dysregulation
of zinc transporter expression with age can potentially lead to age-
associated decline in zinc status, aberrant immune activation and
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inflammation. We confirmed the role of Zip 6 in mediating the
inflammatory response,where loss of Zip 6mRNAexpressionby siRNA
or with age resulted in an enhanced inflammatory response (Fig. 3).

Epigenetic alterations during aging are emerging as factors that
can influence age-related processes, such as chronic inflammation. In
the context of the immune system, epigenetic modifications including
DNA methylation and histone modifications have been shown to
control immune function [35]. For example, Agrawal et al. [36]
recently demonstrated that epigenetic modifications in aged human
DNA increase its immunogenicity, resulting in increased DC activa-
tion, and may be a potential mechanism leading to age-associated
increases in autoimmune and proinflammatory responses. In addition
to age-related epigenetic modifications, specific nutrients can also
modulate epigenetic regulation and alter disease susceptibility
[39,54,55]. In particular, there is strong evidence for a role of zinc in
DNA methylation [56,57]. Zinc deficiency may cause methyl deficien-
cy [58,59], similar to other methyl donors like folate, resulting in
altered methylation patterns, abnormal gene expression and devel-
opmental defects. Interestingly, several zinc transporters have been
reported to be susceptible to epigenetic regulation [37,38]. We
hypothesized that age-related epigenetic modification of zinc trans-
porters, particularly Zip 6, may contribute to Zip 6 dysregulation and
the decline of zinc status with age. In our study, we determined
changes in methylation status with age in immune cells and observed
global DNA hypomethylation in the spleens of agedmice compared to
young mice (Fig. 3). At the same time, DNAmethylation status of CpG
islands in the promoter region of Zip 6 was increased in the
splenocytes of aged mice relative to young mice. Similar promoter
hypermethylations were also observed in ZnT 1 and ZnT 5 (data not
shown). Thus, age-related epigenetic alterations may represent one
mechanism that contributes to age-related deficits in cellular zinc
levels and enhanced inflammation. Preliminary results in zinc
supplemented old mice with improved zinc status did not reveal
changes in Zip 6 promoter methylation compared to old mice fed a ZA
diet (data not shown). However, the methylation assay used in this
report may not be sensitive enough to detect subtle changes in DNA
methylation profile under dietary zinc supplementation conditions.
Detailed characterization of the specific CpG residues within various
zinc transporter promoter regions that are differentially methylated
with age and zinc status is currently ongoing using methylation
assays with improved sensitivity. Secondly, it is also possible that age-
related epigenetic dysregulation of Zip6 is not reversible, but zinc
supplementation simply overcomes losses in cellular zinc and exerts
anti-inflammatory effects, despite continued dysregulation of meth-
ylation and zinc transporter expression. Taken together, our data
suggested that age-related epigenetic alterations may contribute to
deficits in cellular zinc levels in immune cells and enhance
inflammation. Results from our animal studies will aid in providing
rationale for future human studies that will help understand whether
improving zinc status in the elderly will be helpful in correcting age-
related immune defects and prevent chronic inflammation.

To date, the precise factors contributing to age-related zinc
deficiency remain poorly defined. Results from the current study
lend support to the hypothesis that age-related epigenetic modifica-
tions such as DNAmethylation may be one of the contributing factors
that lead to the dysregulation of zinc regulatory proteins such as zinc
transporters. This may lead to impaired zinc utilization and age-
associated decline in zinc status. The resulting zinc loss, particularly in
immune cells, may subsequently contribute to immune dysfunction
and enhanced inflammatory response. We further showed that
improving zinc status in the aged mice via dietary zinc supplemen-
tation can overcome age-related chronic inflammation. Future studies
will focus on further characterizing how age-related epigenetic
modifications, either with age itself or in combination with age-
related zinc deficiency, could impact key regulatory mechanisms that
exacerbate intracellular zinc loss, immune dysregulation and chronic
inflammation. Ultimately, these studies aid in the identification of
factors that may influence zinc status and contribute to the promotion
of inflammation-mediated disorders with age.
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